
December 2005 www.stsc.hill.af.mil 9

Many of today’s more popular agile
software development processes

concentrate strictly on the developer and
project manager. Traditional information
technology (IT) roles such as business
analysts, architects, and testers do not play
a part in many of these agile processes.
Yet, most software product and IT organ-
izations have these roles or their equiva-
lent. What is more, they are not ready to
give up on them. On the contrary, these
roles are becoming more valuable rather
than less so as distributed development
becomes more prevalent.

There are other practices such as the
on-site customer, universal code owner-
ship, pair programming, and stand up
meetings that have proven barriers to
widespread adoption of the more popular
agile processes in many organizations. We
have heard that it is mythical that these
practices are required to be agile [1].
However, we have not been offered alter-
natives in a process form. This article
introduces Microsoft Solutions
Framework (MSF) for Agile Software
Development, a context-based, agile soft-
ware development process for building
.NET applications [2]. This new process
provides innovative techniques to extend
agile software development to all of the
traditional IT roles.

MSF for Agile Software Development
is composed of a set of proven practices
commonly used to build software at
Microsoft. These practices have been col-
lected in an agile form and used by teams
both inside and outside of Microsoft.
This process provides a set of practices
that complement each other; that is, the
sum of the practices is greater than each
one used in isolation [3]. It also presents
alternative practices to those commonly
found in many agile processes.

The Agile Pattern
The core of any agile software develop-
ment process is the way that it partitions

and plans the work. Most agile processes
share a similar method of planning or the
planning game [4]. To start, a project is
divided into time boxes or fixed periods in
which development is done. These time
boxes are called iterations. The iteration
length is usually fixed between two to
eight weeks, although really small projects
have been known to set the iteration
length in days or even hours.

In each time box, we schedule work
from two lists, our version of the product
backlog [5]. The first is the scenario list
that contains the names of scenarios (or
scenario entries) that serve as placehold-
ers for necessary functionality. The sec-
ond is the quality-of-service requirement
list that contains a list of requirements in
areas such as performance, platform, or
security. The scenarios and quality-of-
service requirements in these lists are pri-
oritized, and rough order-of-magnitude
estimates are initially provided by the
developers.

Scenarios and quality-of-service re-
quirements are selected for the upcoming

iteration and placed in the iteration plan
(the equivalent of the sprint backlog [5]).
The amount of work that is chosen is
based upon the previous iteration’s veloc-
ity. Once selected for iteration, more
detailed scenario information is written by
the business analyst. After the detailed
information is provided, developers
divide the scenarios into tasks and pro-
vide more detailed costs for the tasks. The
costs are checked to make sure no devel-
oper is overloaded.

All of this planning occurs in a stag-
gered manner. For example, our business
analyst and project manager are working
on planning iteration 1 in iteration 0.
Developers spend a negligible portion of
their time dividing the scenarios (and
quality-of-service requirements) into tasks
and choosing their tasks for the next iter-
ation. However, most of their time is
spent completing their tasks for the cur-
rent iteration.

Development tasks are just one form
of work breakdown that occurs. Testers
and architects also create tasks as part of
the iteration plan. These roles are inte-
grally involved in ensuring that the solu-
tion is well architected and tested. They
work in conjunction with the developers,
business analysts, and project managers to
ensure the system holds together. We will
explore the nature of the architect and
test roles later in this article.

Customer Collaboration
Over Contract Negotiation1

There is no denying that the on-site cus-
tomer, a customer that can work directly
with the team to explain what is required
of the system, is probably the best way to
ensure project success. Unfortunately,
most users have jobs other than guiding
the delivery of a new system. It is rather
ironic that the very thing that leads to a
successful project is such a rare occur-
rence.

Agile Software Development for the Entire Project

Granville Miller
Microsoft

Does an agile software development process require real organizational change or can an existing organization become
more agile? How do the many traditional information technology (IT) roles such as the business analyst, architect, and
tester become a more integrated part of an agile process? Some recent work [1] debunks the myths that agile processes
require on-site customers, produce ad-hoc requirements and design, and cannot scale to large projects. This article furthers
this work by introducing innovative techniques from a new agile process developed and used by projects within Microsoft.
These techniques span the traditional IT roles such as the business analyst, project manager, architect, developer, tester,
and release manager.

“The personas describe
usage patterns,

knowledge, goals,
motives, and concerns
of a group of users.

The key to good
personas is that they
are memorable and
represent a set of

typical customers.”



At Microsoft, lack of time is only one
reason our users may not be able to be
on-site. They may be located in a differ-
ent city or even a different country. They
may not be a part of our company at all
in the case of commercial products. In
any of these circumstances, our ability to
interact with these users may be limited.
When we obtain the opportunity to inter-
act, we need to make the most of it. We
also need to be able to communicate the
essence of these interactions to the rest
of the team.

Of course, this is exactly what the
business analyst2 is supposed to do in
most organizations. In cases where travel
is necessary to interact with users, they
go. After all, nothing interesting happens
in the office. We send these folks to meet
with our customers because sending
developers on frequent trips has an
adverse affect on the project’s velocity.
However, customer knowledge should
not be locked in a few people’s heads.
Instead, it should be shared with the
entire team.

Sharing details of a customer visit is
commonly performed in most organiza-
tions with trip reports. However, trip
reports are an inadequate vehicle for pro-
viding anything more than a cursory
insight into the customers. Instead,
Microsoft utilizes a technique called per-
sonas as a basis for bringing the spirit of
the customer to the entire development
team [7]. Personas are respectful, ficti-
tious people that represent groups of
users. The personas describe usage pat-
terns, knowledge, goals, motives, and
concerns of a group of users. The key to
good personas is that they are memorable
and represent a set of typical customers.

Personas can also be compared to
actors in use-case models [8]. An actor is
an entity that interacts with the system.
Human actors are instances of a role.
The actor often contains very little infor-
mation other than this role name.
Therefore, while an on-site customer can
usually provide us with better insight, an
actor provides fewer details about the
user community than a persona. In fact,
actors make the assumption that all of
the people that play a given role interact
with the system in the same way.

Personas allow all of the members of
the development team to obtain a deeper
understanding of the user community.
Design, development, and test decisions
can often be made purely on the basis of
a good persona. This allows the team to
maintain velocity even when the business
analyst is on the road. Personas must be
constantly refined as new information is

learned through interactions with the
users. Posters of the personas can be
found on the walls in the halls of the
Microsoft campus.

In addition to writing the personas,
the business analyst also generates the
scenario entries in the scenario list. Once
a scenario is scheduled for iteration, the
business analyst writes up the details of
that scenario. Personas are used in these
scenario descriptions to show how a user
would interact with the system. This pro-
vides the development team with an even
deeper insight into the user community
through understanding how the personas
interact with the system.

Finally, there is no substitute for
reviews of system functionality after key
iterations with the customer. There are
many vehicles for these reviews from

actual working systems to storyboards
with screen captures in cases where it is
impossible to simulate the deployment
environment in the area where the review
is held. Experience at Microsoft has
shown that using personas in conjunction
with scenarios leads to fewer changes
resulting from these reviews than when
personas were not used. Ultimately, a cer-
tain amount of change occurs when
reviewing newly built systems even when
an on-site customer is present.

Working Software Over
Documentation3

The goal of each iteration is to produce
working software. The agile community
believes that those activities that do not
contribute to this working software are
considered lower priority, if not detract-
ing. Unfortunately, there is also a general
belief that many of the traditional archi-
tectural activities fall into this category.

To be clear, the agile philosophy does

not hold a belief that architecture is
unbeneficial. Instead, it is a reaction to
some of the large design efforts that were
performed at the beginnings of projects
and later found to be flawed. This form
of design is known as big design up front
(BDUF). The objection that the agile
community has to BDUF is that without
working software, these efforts have no
feedback mechanism. Therefore, quite a
bit of time can go into these efforts with-
out an understanding of whether they are
constructive or not. Many projects found
that their implementation technology did
not support these designs and a consider-
able amount of time had been wasted.

Architecture is an important part of
any project, agile or otherwise. It is espe-
cially important in the larger agile proj-
ects [9]. However, architecture must lead
as well as reflect the structure and logic
of the working code. Disconnected
architectural efforts are often greeted
with skepticism by the developers who
are building the pieces of the system.
However, understanding every detail of a
system, especially a larger one is beyond
most people’s capability. Architects have
their hands full just keeping abreast of
the changes for iteration. Therefore,
keeping the architecture synchronized
should be as simple as a whiteboard
drawing and as equally expressive [10].

Architects must therefore take a
broad view of the system in addition to
understanding a certain depth. This
breadth is important on larger, more
complex projects. When a project spans
multiple teams, it is important to com-
municate responsibility and overall sys-
tem structure. As larger, agile projects
require teams of teams, communication
between the teams becomes especially
important. Representing the needs of the
solution as a whole is the architects’
responsibility.

To create an agile architecture, MSF
utilizes shadowing. A shadow is architec-
ture for the functionality to be completed
in the iteration. The shadow leads the
working code at the beginning of itera-
tion as the architects get out in front of
the development for the iteration. During
this time, the architecture and the work-
ing code are not in sync. This shadow
communicates any re-architecting or
redesign that needs to occur to keep the
code base from becoming a stove pipe,
spaghetti code, or one of the many other
architectural anti-patterns [11].

As the pieces of the leading shadow
are implemented, the architecture begins
to reflect the working code base. The
original parts of the system that were

Total Creation of a Software Project

10 CROSSTALK The Journal of Defense Software Engineering December 2005

“As larger, agile projects
require teams of teams,
communication between

the teams becomes
especially important.

Representing the needs
of the solution as a

whole is the architects’
responsibility.”



Agile Software Development for the Entire Project

architected but not implemented now
become implemented. When the archi-
tecture represents the working code, we
call the shadow a trailing shadow. As the
sun sets on the iteration, the leading
shadow should be gone and replaced
strictly by trailing shadow. The trailing
shadow is an accumulation of the archi-
tectures over all the iterations.

To keep architecture from becoming
too detailed, we recommend that it be
focused at the component and deploy-
ment levels. For example, a smart client
system for generating budget informa-
tion may consist of a Windows client and
a number of Web Services [12]. Each of
these Web services, the underlying data-
base server, and the client itself would be
components in this model. Remaining at
the component level keeps architects
from becoming the police of low-level
design, although it never hurts to get tips
from a more experienced developer.

The Microsoft terminology for one of
these deployable components such as a
Web service or database server is an appli-
cation. One of the chief tools for the MSF
architect is the application diagram, the
equivalent of the component diagram in
the Unified Modeling Language. Since
the application diagram focuses on more
concrete entities such as a Windows
application, ASP.NET Web service, or
external database, more system-level
detail can be provided.

Shadowing is applied at the compo-
nent or applications level. A shadow
application initially communicates a
desired change in the component-level
behavior of a system. Shadow applica-
tions become invaluable when multiple
teams are trying to coordinate work
across multiple components. Changes
can be made without affecting the code
base until the architecture is ready to be
implemented. Next, the code is generat-
ed4 or written for the shadow and the
leading shadow is removed and replaced
with a trailing shadow.

The planning process for creating
shadow applications is similar to the agile
pattern used to partition and plan the
development work for the system. New
architecture tasks are created at the
beginning of the iteration when any
structural changes need to be made to the
architecture to accommodate the new
scenarios or quality-of-service require-
ments. Architecture tasks are like the
development or coding tasks that are
used to divide the scenarios into the
lower-level pieces that can be assigned to
a single developer. However, they pertain
to the architectural functions that must

be performed to keep the system from
entropy5.

As a result of these tasks, the archi-
tect will add the endpoints or interfaces
to the shadow applications to reflect the
needs of the new requirements. These
endpoints can be validated to ensure that
the components such as Web services
will work together properly in the context
of the deployment environment. The
endpoints of these applications can be
connected to show how the components
interact. Each application may be distrib-
uted on a separate machine or clustered
to work together on a single machine.

As the development team becomes
ready to implement the scenarios, the
endpoints are deleted from the shadow
applications and added to the application
that represents working code. Unit tests
are created for each side of the compo-
nent to ensure that the proper functional-
ity is provided and unit-tested. Finally,
working code is written for these new
endpoints.

At the end of the iteration, all of the
proxy or unimplemented endpoints
should be gone. In other words, all of the
architecture should be translated into
working code. The architectural model is
not divorced from the working system,
but rather is a reflection of it. This makes
the documentation for the component
model match the working system. Unit
tests should be in place to make sure that
the interfaces continue to work as new
functionality is added.

Shadow applications provide many
advantages. They keep the high-level
design of the components in the system
consistent with the code base. They allow
larger teams to define responsibilities in
the context of an agile architecture.
Shadow applications are used to track the
building of functionality across compo-
nent boundaries. In this way, they allow
MSF for Agile Software Development to
scale to larger, more complex projects.

Individuals and Interactions
Over Processes and Tools6

The idea of valuing people over process-
es and tools is not an indication to move
away from the use of today’s advanced
tools. In fact, one of the roots of the
agile revolution is the advance of the
compiler technology provided by our
software development tools. These com-
pilers have made it easier for us to build
systems incrementally. If compilation
times took hours, as they did in the past,
instead of seconds or minutes, can you
imagine performing one refactoring at a

time? Can you imagine running a unit test
first to see it purposely fail after waiting
two hours for it to compile? 

As our development tools have
advanced, so has our capability to take
advantage of these advances in our devel-
opment processes. However, developing
software is ultimately an activity for
knowledge workers. The static nature of
tools and processes is no match for the
adaptation that people can provide to
deal with the ever-changing nature of our
project and our industry.

Each project operates under a differ-
ent climate and set of working condi-
tions. The factors that influence a project
include size, criticality, deadline, and
required quality. There is a general per-
ception that you always need to change
the process to deal with these project dif-
ferences. Creating agile processes for
each of these types of projects would
mean that there would be hundreds of
new agile processes. Instead, we can
understand how these factors affect our
process and utilize a context-based
approach.

A context-based process allows us to
tune the process to the context of our
project. The quality criteria used for
release are often driven by the project
type. Context-driven testing bases the test
approach on the factors of each project
as well. The idea behind context-driven
testing is that the successful approach to
testing one type of application may be
criminal on another type. Test thresholds,
metrics for determining the shipping
quality, may be used to govern the test
and release approach.

The test thresholds are determined by
the project team and recorded by the test
team. Only one test threshold is required
of an MSF project. This is code coverage
for unit tests, a metric that measures the
percentage of code that is tested by a set
of unit tests. Like many of the other agile
processes, MSF for Agile Software
Development requires unit testing as part
of its development activities.

However, the effectiveness of this
safety net is measured in MSF. Normal
test-driven development can account for
50 percent to 70 percent code coverage
on many projects, but to achieve higher
levels of code coverage requires more
complex techniques such as mock objects
[13]. Some projects, like a data converter
for a one-time use, may be fine with a
lower unit testing code coverage thresh-
old for this safety net. A critical system
such as an automatic pilot system proba-
bly requires a greater level of unit testing.

These metrics may be extended to

December 2005 www.stsc.hill.af.mil 11



Total Creation of a Software Project

12 CROSSTALK The Journal of Defense Software Engineering December 2005

govern the project as well. For example,
maximum bug debt, the maximum num-
ber of bugs that a developer may have,
can be used to determine when an itera-
tion devoted to fixing bugs (called bug
allotment iteration) should be scheduled.
When the number of bugs exceeds this
threshold, this is an indication for the
project manager to provide a whole or
part of iteration for fixing bugs.

Responding to Change Over
Following a Plan7

Wouldn’t it be nice if you knew exactly
what had to be done at the beginning of a
project? How about if there were
absolutely no surprises during the project?
There are a few very small, straightfor-
ward projects that enjoy this nirvana.
When the rest of us try to achieve this
ideal condition, we find ourselves faking a
rational design process or behaving as if
change does not happen [14].

However, in the real world of software
development, requirements change. We
may also discover an aspect of the tech-
nology that we are using that we did not
previously know. We learn about the sys-
tem that we are building in the process of
building it. The fact is, we can talk about
these fairy-tale projects where change
does not occur, but reality has a nasty
habit of creeping in.

So why not plan for reality rather than
trying to aspire to a mythical standard that
is unattainable? In fact, we can do even
better; we can use reality to develop more
optimal software development processes.
While our business analysts are gathering
the requirements, what are our developers
doing? How about our project managers?
While our project managers are planning,
what are our developers doing? How
about our testers?

The answer is that they should all be
working in parallel. While our business
analysts understand the requirements, our
project managers are planning, our devel-
opers are developing, and our testers are
testing. How can we do this? We accom-
plish this through staggering the work,
setting up coordination points, and pro-
viding only what is needed in a just-in-
time fashion. For example, we only write
the scenarios for the upcoming iteration,
we plan one iteration at a time, architect
only the necessary pieces, develop the
functionality in the iteration plan only for
this iteration, and write test cases for func-
tionality planned in the current iteration.

Conclusion
Personas, shadow applications, and test

thresholds are part of Microsoft’s new
agile software development process, MSF
for Agile Software Development. These
techniques provide alternate ways to sat-
isfy the value statements of the Agile
Alliance. They have been proven through
their repeated use in delivering Microsoft
software development projects.

Becoming agile is as much about
changing your state of mind as it is the
adoption of new practices. This article
shows some new techniques to introduce
agile software development to many of
the roles that have not been included in
many of the agile processes. By using
these techniques in an agile way, we can
extend agile software development
processes to the entire organization.u

References
1. McMahon, Paul E. “Extending Agile

Methods: A Distributed Project and
Organizational Improvement Perspec-
tive.” CrossTalk May 2005 <www.
stsc.hill.af.mil/crosstalk/2005/05/05
05McMahon.html>.

2. Microsoft Developer Network. The
MSF for Agile Software Development
Workbench. Microsoft Corporation,
18 Sept. 2005 <http://lab.msdn.
microsoft.com/teamsystem/work
shop/msfagile/default.aspx>.

3. Miller, Granville. “Want a Better
Software Development Process?
Complement It.” IEEE IT Profes-
sional 5.5 (Sept./Oct. 2003): 49-51.

4. Beck, Kent, and Martin Fowler.
Planning Extreme Programming.
Addison-Wesley, 2000.

5. Schwaber, Ken. Agile Project
Management With Scrum. Microsoft
Press, 2004.

6. Beck, Kent, et al. “Manifesto for Agile
Software Development.” Agile
Alliance, Feb. 2001 <www.agile
manifesto.org>.

7. Cooper, Alan. The Inmates Are
Running the Asylum: Why High Tech
Products Drive Us Crazy and How to
Restore the Sanity. 2nd ed. Sams, 2004.

8. Armour, Frank, and Granville Miller.
Advanced Use Case Modeling: Soft-
ware Systems. Addison-Wesley, 2000.

9. Eckstein, Jutta. Agile Software
Development in the Large: Diving
Into the Deep. Dorset House
Publishing, 2004.

10. Ambler, Scott. Agile Modeling:
Effective Practices for eXtreme
Programming and the Unified Process.
Wiley, 2002.

11. Brown, William J., Raphael C.
Malveau, Hays W. “Skip” McCormick
(III), Thomas J. Mowbray. Anti-

Patterns: Refactoring Software, Archi-
tectures, and Projects in Crisis. Wiley,
1998.

12. Boulter, Mark. Smart Client Architec-
ture and Design Guide. Microsoft
Press, 2004.

13. Astels, David. Test Driven Develop-
ment: A Practical Guide. Prentice Hall,
2003.

14. Parnas, David Lorge, and Paul C.
Clements. “A Rational Design Process
and How to Fake It.” IEEE Trans-
actions on Software Engineering 12.2
(Feb. 1986): 251-257.

Notes
1. This is the third value statement from

the agile manifesto [6].
2. There are many different names for this

role depending on whether the project
is created for commercial or internal
use. The role name is not as important
as the function that it performs.

3. This is the second value statement
from the agile manifesto [6].

4. Class or method structure for the
high-level components can be generat-
ed from a shadow.

5. Entropy is the tendency for software
to become brittle and difficult to add
to or change over time.

6. This is the first value statement from
the agile manifesto [6].

7. This is the fourth value statement
from the agile manifesto [6].

About the Author

Granville “Randy”
Miller is the architect of
Microsoft’s agile soft-
ware development pro-
cess, Microsoft Solutions
Framework for Agile

Software Development. He has two
decades of experience in the commercial
software industry and has spoken at
many international events, including
XP200x, Conference On Object
Oriented Programming Systems,
Languages and Applications, Web
Services Edge, Software Development
West, Microsoft TechEd, and others. His
interests include software development
technology and agile software develop-
ment. Miller is author of “Advanced Use
Case Modeling” and “A Practical Guide
to Extreme Programming.”

Microsoft
randymil@microsoft.com


